Contents

About the Author — V

Annotation — VII

Introduction —— I	X
-------------------	---

1	Electromagnetic pulse—a parcel from the past — 1
1.1	Introduction — 1
1.2	History of HEMP — 1
1.3	The issues of theoretical physics — 9
1.4	People's Commissariat for Internal Affairs (NKVD) as the primary
	"designer" of the first Soviet nuclear explosive — 12
1.5	Thermonuclear bombs — 29
1.6	Nuclear test explosions — 36
1.7	The status of HEMP protection — 53
	Bibliography — 59
2	A contemporary view of HEMP for electrical engineers — 60
2.1	Is the contemporary view up to date? — 60
2.2	The basic physical processes — 60
	Bibliography — 77
3	HEMP simulators — 79
3 3.1	HEMP simulators — 79 HEMP simulators: principle of operation — 79
-	
3.1	HEMP simulators: principle of operation — 79
3.1 3.2	HEMP simulators: principle of operation — 79 Classification of HEMP simulators — 81
3.1 3.2 3.3	HEMP simulators: principle of operation — 79 Classification of HEMP simulators — 81 Foreign HEMP simulators — 82
3.1 3.2 3.3 3.4	HEMP simulators: principle of operation — 79 Classification of HEMP simulators — 81 Foreign HEMP simulators — 82 HEMP simulators available in Russia and Ukraine — 88
3.1 3.2 3.3 3.4 3.5	HEMP simulators: principle of operation — 79 Classification of HEMP simulators — 81 Foreign HEMP simulators — 82 HEMP simulators available in Russia and Ukraine — 88 Portable HEMP simulators — 93
3.1 3.2 3.3 3.4 3.5 4	HEMP simulators: principle of operation — 79 Classification of HEMP simulators — 81 Foreign HEMP simulators — 82 HEMP simulators available in Russia and Ukraine — 88 Portable HEMP simulators — 93 The vulnerability of electronic equipment to HEMP — 95
3.1 3.2 3.3 3.4 3.5 4	 HEMP simulators: principle of operation — 79 Classification of HEMP simulators — 81 Foreign HEMP simulators — 82 HEMP simulators available in Russia and Ukraine — 88 Portable HEMP simulators — 93 The vulnerability of electronic equipment to HEMP — 95 Electronic equipment is the most important component of the modern
3.1 3.2 3.3 3.4 3.5 4 4.1	 HEMP simulators: principle of operation — 79 Classification of HEMP simulators — 81 Foreign HEMP simulators — 82 HEMP simulators available in Russia and Ukraine — 88 Portable HEMP simulators — 93 The vulnerability of electronic equipment to HEMP — 95 Electronic equipment is the most important component of the modern infrastructure — 95
3.1 3.2 3.3 3.4 3.5 4 4.1 4.2	 HEMP simulators: principle of operation — 79 Classification of HEMP simulators — 81 Foreign HEMP simulators — 82 HEMP simulators available in Russia and Ukraine — 88 Portable HEMP simulators — 93 The vulnerability of electronic equipment to HEMP — 95 Electronic equipment is the most important component of the modern infrastructure — 95 The vulnerability of discrete electronic components to HEMP — 96
3.1 3.2 3.3 3.4 3.5 4 4.1 4.2 4.3	 HEMP simulators: principle of operation — 79 Classification of HEMP simulators — 81 Foreign HEMP simulators — 82 HEMP simulators available in Russia and Ukraine — 88 Portable HEMP simulators — 93 The vulnerability of electronic equipment to HEMP — 95 Electronic equipment is the most important component of the modern infrastructure — 95 The vulnerability of discrete electronic components to HEMP — 96 Vulnerability of integral circuits (microchips) to HEMP — 99
3.1 3.2 3.3 3.4 3.5 4 4.1 4.2 4.3 4.4	 HEMP simulators: principle of operation — 79 Classification of HEMP simulators — 81 Foreign HEMP simulators — 82 HEMP simulators available in Russia and Ukraine — 88 Portable HEMP simulators — 93 The vulnerability of electronic equipment to HEMP — 95 Electronic equipment is the most important component of the modern infrastructure — 95 The vulnerability of discrete electronic components to HEMP — 96 Vulnerability of integral circuits (microchips) to HEMP — 99 Vulnerability of microprocessors to HEMP — 104

5	Electronic components for HEMP protection system — 110
5.1	Testing of low-power protective components under the low pulse
	voltages — 110
5.2	Testing of low-power protective components under the high pulse
	voltages — 114
5.3	Testing of powerful protective components under conditions close to
	reality — 118
5.4	Conclusions — 125
	Bibliography — 126
6	External protection of power systems' electronic equipment from
	HEMP — 128
6.1	Introduction — 128
6.2	Analysis of capability of conventional building materials to weaken
	electromagnetic emission — 128
6.3	Composite construction materials with improved electrical
	conductivity — 132
6.4	Materials absorbing electromagnetic emission — 138
6.5	Another method for depression of HEMP electromagnetic field strength
	inside the power industry facilities containing the electronics — 142
6.6	Reducing electronic equipment vulnerability to HEMP with architectural
	solutions — 145
6.7	Conclusions — 146
	Bibliography — 146
7	The issues of electronic equipment grounding at the power facilities — 149
7.1	Types of electromagnetic interference at power facilities — 149
7.2	Challenges of the conventional grounding systems — 150
7.3	Differences between lightning and HEMP — 154
7.4	Grounding of electrical equipment as the main protective means for
	HEMP — 160
7.5	Protection devices for HEMP — 161
7.6	New method for grounding electronic equipment mounted inside the
	cabinets — 162
	Bibliography — 169
8	The issue of control cables selection for HEMP-protected electric
	facilities — 171
8.1	Introduction — 171
8.2	Designs and features of shielded control cables — 171
8.3	Evaluation of control-cable shielding effectiveness — 175
8.4	Choosing control cables — 177

8.5 Conclusion — **178** Bibliography — **178**

9 Grounding of control-cable shields — 179

- 9.1 Introduction 179
- 9.2 Shielding principles 179
- 9.3 Interference types and grounding options for cable shields 180
- 9.4 Problems and contradictions 181
- 9.5 Factors impacting the effectiveness of shield groundings 182
- 9.6 The suggested method of shield grounding 185 Bibliography — 187

10 HEMP filters — 189

- 10.1 Introduction 189
- 10.2 Do the filters really protect from an electromagnetic pulse? 189
- 10.3 The frequency range of filters 193
- 10.4 Feasibility of HEMP equipment protection with filters 193
- 10.5 Protection of equipment from HEMP high-frequency noise 195
- 10.6 Protection of the equipment from the HEMP-generated pulse overvoltage 196
- 10.7 Ferrite filters 197
- 10.8 Conclusions **210**
 - Bibliography 211

11 High-voltage insulation interfaces — 212

- 11.1 Introduction 212
- 11.2 High-voltage link for transmitting discrete commands in relay protection, automation and control systems 212
- 11.3 Usage reed-switch-based high-voltage interfaces in HEMP susceptibility tests 218
- 11.4 Design features of high-voltage isolation interfaces 219 Bibliography — 221

12 Improvement of the resilience of industrial cabinet-installed electronic equipment to HEMP Impact — 222

- 12.1 Introduction 222
- 12.2 New cabinets for electronic equipment 222
- 12.3 Retrofitting existing cabinets equipped with glass doors 225
- 12.4 Enhancement of the cabinet cable entries 228
- 12.5 Voltage pulse suppression 233
- 12.6 Retrofitting grounding systems of electric cabinets 236
- 12.7 Conclusion 237

Bibliography — 237

13	Basic principles of direct-current auxiliary-power system (DCAPS)
	protection — 238
13.1	Introduction — 238
13.2	Protection of DCAPS operating equipment from HEMP — 238
13.3	Backup-power supplies for DCAPS systems — 240
13.4	Mobile substations and features to protect their DCAPS from HEMP — 245
13.5	Direct-current auxiliary-power systems of power plants — 251 Bibliography — 252
14	Protection of telecommunication systems in electric power facilities from HEMP — 253
14.1	Introduction — 253
14.2	Ways to solve the problem — 254
14.3	The use of fiber-optic communication lines — 254
14.4	Protection telecommunication equipment with galvanic couplings — 255
14.5	New devices for protecting existing telecommunication equipment — 260
14.6	Protection of the communication cabinets — 263
14.7	The general concept for communication-equipment protection — 265
14.8	Retrofitting grounding systems of cabinets containing the electronic
140	equipment — 266 Retrofitting open-patch panels — 267
14.9	- , , ,
14.10	Protection of the power supply system — 267
14.11	Retrofitting the facility (room) containing the critical kinds of
1 4 1 2	communication equipment — 267
14.12	Conclusion — 268 Bibliography — 268
15	Improvement of HEMP resilience of automatic fire-suppression
	systems — 269
15.1	Introduction — 269
15.2	Firefighting systems for power facilities — 269
15.3	Improvement of automatic firefighting system's resilience to HEMP — 273
15.4	Conclusion — 278 Bibliography — 278

16 Protection of diesel generators from HEMP — 279

- 16.1 Introduction 279
- 16.2 Increasing resilience of medium- and high-capacity DGs 279
- 16.3 Protection of DGs stored and de-energized outdoors 280
- 16.4 Protection of DGs connected to consumer network 284
- 16.5 Active protection method for diesel-generator controller 288
- 16.6 Conclusion 295 Bibliography — 295

17 Features of HEMP resilience-test methods for power system

- electronics 296
- 17.1 Introduction 296
- 17.2 Features of testing equipment on a HEMP simulator 296
- 17.3 Test objectives 297
- 17.4 Features of the test procedure 298
- 17.5 Test modes and test-pulse parameters **300**
- 17.6 Performance criteria **302**
- 17.7 Conclusion 303 Bibliography — 304

18 Methods and means of evaluation of the effectiveness of HEMP protection of the installed power-system — 305

- 18.1 Introduction **305**
- 18.2 Testing of equipment resilience to direct impact of the HEMP electrical field (E1-component) **305**
- 18.3 Equipment for HEMP filter testing 307
- 18.4 Equipment designed for evaluation of the effectiveness of building, room and cabinet shielding 311
- 18.5 Pulse voltage generators 313
- 18.6 Conclusion **315**

Bibliography — 315

19	Features of testing digital protective relays resilience to HEMP — 317
19.1	Use of performance criterion during the electromagnetic compatibility
	(EMC) test of electronic equipment — 317
19.2	Features of using performance criterion during the HEMP resilience test
	of digital protective relays (DPR) — 317
19.3	Criticism of the DPR testing method used — 318
19.4	Analysis of the result of the second independent trial of the same type of
	DPR — 320
19.5	Analysis of the result of the third independent trial of the same type of
	DPR — 323

19.6 Conclusions — **331**

Bibliography — 332

20 Establishment of inventory of electronic equipment's replacement modules as a way to improve survivability of the power system — 334

- 20.1 Optimization of inventory of electronic equipment replacement modules 334
- 20.2 The problem of the traditional mode of SPTA storage 335
- 20.3 Requirements for protective containers 336
- 20.4 Protective containers available on the market 337
- 20.5 Conclusion **340** Bibliography — **341**
- 21 The problem of impact of geomagnetically induced currents on power transformers and it solution 342
- 21.1 Geomagnetically induced currents generated by solar storms 342
- 21.2 Geomagnetically induced currents generated by HEMP 352
- 21.3 The effect of the E3 component of HEMP on electric power equipment 353
- 21.4 Protection of power equipment from geomagnetically induced currents **354**
- 21.5 Conclusions 362 Bibliography — 363

A Standards on HEMP — 365

- A.1 Standards of International Electrotechnical Commission (IEC) 365
- A.2 Standards of Institute of Electrical and Electronics Engineers (IEEE) — 366
- A.3 Standards of European Commission 366
- A.4 Standards of International Telecommunication Union (ITU) 366
- A.5 Military Standards (USA) 366
- A.6 NATO Standards 367

B EMP and its Impact on Power System (List of Reports) — 369

- B.1 EMP Theory 369
- B.2 Geomagnetically Induced Currents and its Impact on Power System — **369**
- B.3 EMP Impact on Power System 370
- C European Projects related to Protection against HEMP 375

Index — 377