Electronic Devices on Discrete Components for Industrial and Power Engineering
Electronic Devices on Discrete Components for Industrial and Power Engineering

Vladimir Gurevich
Israel Electric Corp, Haifa
Author

Vladimir Gurevich was born in Kharkov, Ukraine, in 1956. He received an M.S.E.E. degree (1978) at the Kharkov Technical University, named after P. Vasilenko, and a Ph.D. degree (1986) at Kharkov National Polytechnic University. His employment experience includes: teacher, assistant professor and associate professor at Kharkov Technical University, and chief engineer and director of Inventor, Ltd. In 1994, he arrived in Israel and works today at Israel Electric Corp. as a specialist of the Central Electric Laboratory. He is the author of more than 140 professional papers and 4 books and holder of nearly 120 patents in the field of electrical engineering and power electronics. In 2006 he was Honorable Professor with the Kharkov Technical University, and since 2007 he has served as an expert with the TC-94 Committee of International Electrotechnical Commission.
Contents

1 Solid-State Electronics Elements .. 1
 1.1 Semiconducting Materials and p-n-Junction 1
 1.2 The Transistor’s Principle 7
 1.3 Some Transistor Kinds 9
 1.4 Bipolar Transistor General Modes 18
 1.5 Transistor Devices in Switching Mode 24
 1.6 Thyristors .. 31
 1.7 Control of Thyristors on Direct Current 39
 1.8 Control of Thyristors on Alternating Current 43
 1.9 Diac, Triac, Quadac 44

2 Reed Switches .. 49
 2.1 What Is It? .. 49
 2.2 Polarized and Memory Reed Switches 54
 2.3 Power Reed Switches 60

3 High-Voltage Reed Relays .. 63
 3.1 HV Reed Relays for Low Current DC Circuits 63
 3.2 HV Reed Relays for High Current Applications 71
 3.3 Relay Responding to the Current Changing Rate 74
 3.4 Differential HV Reed Relay 75
 3.5 Reed-Based Devices for Current Measurement in High
 Potential Circuits ... 76
 3.6 Spark-Arresting Circuits for Reed Relays 78

4 Elementary Function Modules 83
 4.1 Switching Devices ... 83
 4.2 Generators, Multivibrators, Pulse-Pairs 97
 4.3 Timers ... 104
 4.4 Logic Elements .. 107
 4.5 Overcurrent and Overvoltage Protection Modules 111
 4.6 Voltage Stabilizers and Regulators 117
 4.7 Other Functional Modules for Automatic Devices 124

5 Simple Protective Relays on Discrete Components 131
 5.1 Universal Overcurrent Protective Relay 131
 5.2 Simple Very High-Speed Overcurrent Protection Relay .. 140

© 2008 by Taylor & Francis Group, LLC
Contents

5.3 The New Generation Universal Purpose Hybrid Reed-Solid-State Protective Relays .. 154
5.4 Automatic High-Voltage Circuit Breakers 163
5.5 High-Speed Voltage Unbalance Relay 167
5.6 Impulse Action Protective Relay 169

6 Improvement of Microprocessor-Based Protective Relays . . 173
6.1 Power Supply of Microprocessor-Based Protective Relays at Emergency Mode ... 173
6.2 Increasing Reliability of Trip Contacts in Microprocessor- Based Protective Relays .. 181

7 Automatic Devices for Power Engineering 197
7.1 Arc Protection Device for Switchboards 6 – 24 kV 197
7.2 Automatic-Reset Short Circuit Indicator for 6 – 24 kV Bus Bars ... 199
7.3 High-Current Pulse Transducer for Metal-Oxide Surge Arrester ... 201
7.4 Current Transformers’ Protection from Secondary Circuit Disconnection ... 207
7.5 A Single-Phase Short Circuit Indicator for Internal HV Cables in Medium Voltage Substation 211
7.6 Ground Circuit Fault Indicator for Underground HV Cable Network .. 214
7.7 HV Indicators for Switchgears and Switchboards 218

Appendix A1: High-Speed Miniature Reed Switches 225
Appendix A2: High-Voltage Vacuum Reed Switches 233
Appendix A3: Mercury Wetted Reed Switches 245
Appendix A4: Industrial Dry Reed Switches 251
Appendix B1: High-Voltage Bipolar Transistors 281
Appendix B2: High-Voltage Darlington Transistors 333
Appendix B3: High-Voltage FET Transistors 341
Appendix B4: High-Voltage IGBT Transistors 351
Appendix C: High-Voltage Thyristors 367
Appendix D: High-Voltage Triacs 389
Appendix E: Bilateral Voltage-Trigger Switches 401

© 2008 by Taylor & Francis Group, LLC
Preface

Integral microchips and microprocessors have come into our lives so swiftly and completely that sometimes it seems that modern equipment simply cannot exist without them, which is true. However, dependence of modern equipment on microelectronics and microprocessors does not mean that there are no problems in this area. The integrity of many functions distributed earlier among separate devices of a complex system in a single microprocessor leads to the reduction of system reliability because damage to the microprocessor or to any number of peripheral elements serving the microprocessor leads to failure of the whole system but not of its separate functions as it was in pre-microprocessor time. Added to this is the extra sensitivity of microelectronic and microprocessor-based equipment to electromagnetic interferences (EMI) and the possibility of intentional remote actions breaking the normal operation of the microprocessor-based devices (electromagnetic weapons, electromagnetic terrorism). Intensive investigations into the electromagnetic weapons field are being carried out in Russia, the U.S., England, Germany, China, and India. Many world-leading companies work intensively in this sphere creating new devices of these weapon systems functioning at a distance of several dozens of meters to several kilometers, which while specialized in their use are still available to everybody (as they are freely sold on the market).

The need for specialized power supplies of microprocessors, different types of memory, special input and output circuits, special software – in short, all of the above-mentioned – has led to the situation where documentation and manufacturing of automation devices has become available only to serious companies having all the necessary resources for this. Development tendencies of this area of technique make it more and more unavailable to individual engineers and technicians wishing to apply their knowledge and ingenuity to improve production or technological processes to their companies. At the same time, lately in the market a number of new types of small-size, discrete electronic components with previously inaccessible parameters appeared. They are miniature transistors meant for currents of dozens of amperes and voltages of 1200 – 1600 V; miniature vacuum reed switches with operational speeds of milliseconds capable of sustaining voltages of 1,000 – 2,000 V; and other no less interesting elements. These new discrete components serve as the basis for creating industrial automation and control devices that are fed directly from networks of 220 – 250 V and work directly with input and output signals of the same voltage level. Hybrid devices combining advantages of semiconductor (transistors, thyristors) and electromechanical (reed switches) elements are of particular interest.

This book is concerned with the description of different functional units and automation devices for industry and electric power engineering implemented by modern discrete electronic elements without using microelectronics and microprocessor-based technologies. The devices described in this book turn out to be much simpler.
and cheaper; they may be produced not only by large companies, but even by independent amateurs. This book presents for the readers’ judgment dozens of unusual but very simple realizable devices, which may be easily created by any engineer or technician wishing to improve automation systems. Some of the technical decisions presented by the author may serve as the basis for the creation of new types of devices of relay protection and automation free from disadvantages of complex microelectronic systems.

The book consists of seven chapters and appendices containing reference data. The first three chapters are devoted to the theory and operating principles of modern discrete components designed for automation devices: transistors, thyristors, dinistors, reed switches, and high-voltage reed switch relays. The fourth chapter describes dozens of different functional modules of automation systems incorporating discrete elements with direct supply from 220 – 250 V networks: switching devices, generators and multivibrators, timers, logic elements, elements sensitive to overcurrents and overvoltages, voltage regulators and stabilizers, pulse expanders, etc. The fifth, sixth, and seventh chapters are devoted to the description of concrete examples of automation devices for industry and electric power engineering based on discrete electronic components and also hybrid ones: semiconductors and reed switches.

The book makes a smooth transition from theory and the properties of modern electronic elements by means of examination of operating principles and examples of realization of separate functional units of automation devices to the description of concrete examples of those that are finished and ready for use. The author thinks that this approach to the material will make it possible for the readers not only to repeat the constructions that are described, but to understand and master the general principles of automation devices on discrete elements and to apply them in the future for creation of new necessary constructions. As an aid to complete understanding, voluminous reference material has been included containing information about the most modern components specially selected by the author and classified in the appendices.